邹文峰,王平,刘忠波,房克照,孙家文,张宁川.基于双层Boussinesq方程的三维波浪数值模型及其验证[J].海洋工程,2022,40(6):41~50
基于双层Boussinesq方程的三维波浪数值模型及其验证
A three-dimensional wave numerical model based on the two-layer Boussinesq equation and its validation
投稿时间:2021-12-15  
DOI:10.16483/j.issn.1005-9865.2022.06.005
中文关键词:  波浪  三维数值模型  有限差分法  非线性  双层Boussinesq方程
英文关键词:wave  three-dimensional numerical model  finite difference method  nonlinearity  two-layer Boussinesq equation
基金项目:国家自然科学基金资助项目(52171247,51779022,52071057,51709054);国家重点研发计划专项项目(2019YFC1407705);海岸及近海工程重点实验室开放基金资助项目(LP2107)
作者单位E-mail
邹文峰 大连理工大学 海岸及近海工程国家重点实验室, 辽宁 大连 116024  
王平 大连理工大学 海岸及近海工程国家重点实验室, 辽宁 大连 116024
国家海洋环境监测中心 国家环境保护海洋生态环境整治修复重点实验室, 辽宁 大连 116023 
wping0503@163.com 
刘忠波 大连海事大学 交通运输工程学院, 辽宁 大连 116026  
房克照 大连理工大学 海岸及近海工程国家重点实验室, 辽宁 大连 116024  
孙家文 国家海洋环境监测中心 国家环境保护海洋生态环境整治修复重点实验室, 辽宁 大连 116023  
张宁川 大连理工大学 海岸及近海工程国家重点实验室, 辽宁 大连 116024  
摘要点击次数: 67
全文下载次数: 47
中文摘要:
      Liu等给出的最高导数为2的双层Boussinesq水波方程具有较好的色散性和非线性,基于该方程建立了有限差分法的三维波浪数值模型。在矩形网格上对方程进行了空间离散,采用高阶导数近似方程中的时、空项,时间积分采用混合4阶Adams-Bashforth-Moulton的预报—校正格式。模拟了深水条件下的规则波传播过程,计算波面与解析结果吻合较好,反映出数值模型能很好地刻画波面过程及波面处的速度变化;在kh=2π条件下可较为准确获得沿水深分布的水平和垂向速度,这与理论分析结果一致。最后,利用数值模型计算了规则波在三维特征地形上的传播变形,数值结果和试验数据吻合较好;高阶非线性项会对波浪数值结果产生一定的影响,当波浪非线性增强,水深减少将产生更多的高次谐波。建立的双层Boussinesq模型对强非线性波浪的演化具有较好的模拟精度。
英文摘要:
      The two-layer Boussinesq water wave equation with the highest derivative of 2 given by Liu et al. has better dispersion and nonlinearity, based on which, a 3D wave numerical model with finite difference method is established. The equations are spatially discretized on rectangular grids, and using higher order derivatives to approximate the time and space items in the equation. For time integration, a composite 4th-order Adams-Bashforth-Moulton predict-correction format is used. The regular wave propagation process is simulated under deep water conditions, and the calculated wave surface agrees well with the analytical results, which reflects that the numerical model can well portray the wave surface process and the velocity variation at the wave surface; the horizontal and vertical velocities distributed along the water depth can be obtained more accurately for kh=2π, which is consistent with the results of the theoretical analysis. Finally, the numerical model is used to calculate the propagation transformation of regular waves over the three-dimensional characteristic terrain, and the numerical results are in good agreement with the relevant experimental data. The higher order nonlinear term will have some effect on the numerical results of the wave; more higher harmonics will be generated as the wave nonlinearity is enhanced and the water depth is reduced. The two-layer Boussinesq model developed in this research has good simulation accuracy for the evolution of strong nonlinear waves.
查看全文  查看/发表评论  下载PDF阅读器
关闭
水利部交通运输部国家能源局南京水利科学研究院 海洋工程  版权所有
地址: 南京虎踞关34号 邮编:210024 电话:025-85829332 E-mail: oe@nhri.cn
苏ICP备05007122号