张建宏,卢文月,李欣,田新亮,郭孝先,张显涛.基于深度学习的随船波浪测量技术研究[J].海洋工程,2021,39(5):101~110
基于深度学习的随船波浪测量技术研究
Research on wave surveying technology based on deep learning
投稿时间:2020-09-11  
DOI:10.16483/j.issn.1005-9865.2021.05.011
中文关键词:  深海浮式平台  入射波  深层神经网络  非线性效应  气隙响应
英文关键词:deep sea floating platform  incident wave  deep neural network  nonlinearity  air-gap response
基金项目:国家自然科学基金青年项目(51709169)
作者单位E-mail
张建宏 上海交通大学 海洋工程国家重点实验室, 上海 200240
上海交通大学 三亚崖州湾深海科技研究院, 海南 三亚 572025 
 
卢文月 上海交通大学 海洋工程国家重点实验室, 上海 200240
上海交通大学 三亚崖州湾深海科技研究院, 海南 三亚 572025 
lwy_qiye@sjtu.edu.cn 
李欣 上海交通大学 海洋工程国家重点实验室, 上海 200240
上海交通大学 三亚崖州湾深海科技研究院, 海南 三亚 572025 
 
田新亮 上海交通大学 海洋工程国家重点实验室, 上海 200240
上海交通大学 三亚崖州湾深海科技研究院, 海南 三亚 572025 
 
郭孝先 上海交通大学 海洋工程国家重点实验室, 上海 200240
上海交通大学 三亚崖州湾深海科技研究院, 海南 三亚 572025 
 
张显涛 上海交通大学 海洋工程国家重点实验室, 上海 200240
上海交通大学 三亚崖州湾深海科技研究院, 海南 三亚 572025 
 
摘要点击次数: 103
全文下载次数: 50
中文摘要:
      深海极端波浪环境为浮式海洋平台作业时最为关键的海洋动力环境之一。在其作用下,深海浮式平台的运动、气隙以及结构响应等均为近年来的研究热点。然而,在深海环境中,入射波浪环境往往通过X波段雷达进行测量,仅能获得波浪的短时统计值,极大限制了实海域浮动平台动力响应的研究。目前,尚无成熟的方法能够对海洋浮式平台所处海域的入射波时序进行实时测量。针对深远海半潜式平台的波浪时序随船测量问题,结合平台气隙响应与运动响应数据建立基于深层神经网络的波浪非线性解耦模型,准确估计辐射、绕射波浪以及其非线性成分对时序波浪场的影响。研究显示,基于深度神经网络的波浪时序测量技术可以实现从气隙响应到入射波信息的反推,利用该方法计算得到的波浪时序具有较高的精度。
英文摘要:
      The deep-sea extreme wave environment is one of the most critical input of marine dynamic environment for floating offshore platforms. The motion, air gap and structural response of the deep-sea floating platform are the research hotspots in recent years. However, in the deep-sea environment, the incident wave environment is often measured by X-band radar, and only short-term statistical values can be obtained, which greatly limits the study on the dynamic response of floating platforms in real sea areas. At present, there is no mature method for real-time measurement of the incident wave timing in the sea area where the marine floating platform is located. In this research, the wave timing onboard measurement problem of the far-reaching semi-submersible platform is investigated. By combining the air gap response and motion response data of the platform, a wave nonlinear decoupling model based on deep neural network is established to accurately estimate the effects of radiation, diffraction waves and their nonlinear components on the wave field of time series. The research shows that the wave timing calculation method based on the deep neural network can realize the backward extrapolation from the air gap response to the incident wave information, and the wave timing calculation obtained by using the method has a high accuracy.
查看全文  查看/发表评论  下载PDF阅读器
关闭
水利部交通运输部国家能源局南京水利科学研究院 海洋工程  版权所有
地址: 南京虎踞关34号 邮编:210024 电话:025-85829332 E-mail: oe@nhri.cn
苏ICP备05007122号