 设为首页 加入收藏

Numerical simulation of wave propagation and wave-breaking on slope topography

DOI：10.16483/j.issn.1005-9865.2020.04.007

 作者 单位 王红川 南京水利科学研究院 水文水资源与水利工程国家重点实验室, 江苏 南京 210029 刘华帅 南京水利科学研究院 水文水资源与水利工程国家重点实验室, 江苏 南京 210029 杨氾 南京水利科学研究院 水文水资源与水利工程国家重点实验室, 江苏 南京 210029

波浪在斜坡地形上破碎，破波后稳定波高多采用物理模型试验方法进行研究，利用近岸波浪传播变形的抛物型缓坡方程和波能流平衡方程，导出了适用于斜坡上波浪破碎的数值模拟方法。首先根据波能流平衡方程和缓坡方程基本型式分析波浪在破波带内的波能变化和衰减率，推导了波浪传播模型中波能衰减因子和破波能量流衰减因子之间的关系；其次，利用陡坡地形上的高阶抛物型缓坡方程建立了波浪传播和波浪破碎数学模型；最后，根据物理模型试验实测数据对数值模拟的效果进行验证。数值计算与试验资料比较表明，该模型可以较好地模拟斜坡地形的波浪传播波高变化。

The stable wave height after deformation and breaking during the wave propagation on slope terrain is generally studied by physical model. In this study, the numerical simulation method for wave breaking on slope terrain is derived using the parabolic mild slope equation and the wave energy balance equation of near-shore wave propagation. Firstly, the relationship between the wave energy decay factor and the wave energy flow decay factor in the wave propagation model is deduced based on the wave energy flow balance equation and the mild slope equation; secondly, the mathematical model of wave propagation and wave breaking is established using the high-order parabolic mild slope equation on slope terrain; finally, the result of the numerical simulation is verified based on the experimental data of the physical model. Comparison between numerical calculation and experimental data shows that the model can simulate the wave propagation and wave height variation over the slope-submerged embankment.